Тысячи галактик с активным звездообразованием в ранней Вселенной
На этом снимке запечатлено действие, разворачивавшееся миллиарды лет назад в ранней Вселенной – сверкающие галактики, в которых вспыхивают сверхновые и яркие джеты, испускаемые со стороны черных дыр.
Гигантский европейский радиотелескоп LOFAR обнаружил десятки тысяч новых звезд, рождающихся в далеких галактиках, с беспрецедентной точностью, сообщают ученые в новом исследовании.
Используя методы, включающие экстремально долгую экспозицию и поле обзора размером с 300 размеров полной Луны, ученые смогли различить галактики, подобные Млечному пути, в древней Вселенной.
«Свет со стороны этих галактик шел по Вселенной в течение миллиардов лет, прежде чем достичь Земли; это означает, что мы видим галактики в таком состоянии, в каком они находились миллиарды лет назад, то есть в то время, когда происходило формирование основной части их звезд», - сказал Филипп Бест (Philip Best) из Британского университета в Эдинбурге, Шотландия, который возглавлял исследовательскую группу.
Телескоп LOFAR объединяет сигналы, принимаемые 70 000 индивидуальными тарельчатыми антеннами, расположенными в разных странах, от Ирландии до Польши, и связанными высокоскоростной оптоволоконной сетью.
Исследователи наблюдали слабый, низкоэнергетический свет, невидимый человеческому глазу, который испускается со стороны сверхвысокоэнергетических частиц, путешествующих в космосе со скоростью, близкой к скорости света. Наблюдение этого света позволяет астрономам изучать взрывы сверхновых, столкновения между скоплениями галактик и активными черными дырами, которые ускоряют эти частицы в составе ударных волн или джетов.
Наблюдая на протяжении продолжительного времени одни и те же участки неба и объединяя полученные данные для формирования одного снимка с очень высокой продолжительностью экспозиции, исследователи смогли обнаружить радиоизлучение, идущее со стороны взрывающихся звезд.
Самые далекие обнаруженные объекты относятся к эпохе, когда возраст Вселенной составлял всего лишь один миллиард лет. В настоящее время возраст нашего мира оценивается в 13,8 миллиарда лет, пояснили авторы.
Телескоп наблюдал широкий участок неба в Северном полушарии, при этом эквивалентная продолжительность экспозиции составила в 10 раз больше, чем продолжительность экспозиции, используемой при составлении первой карты космоса в 2019 г., добавили исследователи.
Исследование опубликовано в журнале Astronomy & Astrophysics.
https://www.astronews.ru/cgi-bin/mng.cg … 0408214134
Более 5000 тонн внеземной пыли падает на Землю ежегодно
Каждый год на нашу планету падает пыль, источниками которой являются кометы и астероиды. Эти частицы пыли межпланетного происхождения проходят сквозь нашу атмосферу и наблюдаются в ней как «падающие звезды». Некоторые из таких частиц достигают поверхности Земли в форме микрометеоритов.
В новом исследовании ученые международной программы, проводимой на протяжении более чем 20 лет, определили, что примерно 5200 тонн таких микрометеоритов достигает поверхности планеты ежегодно.
Микрометеориты всегда падали на нашу планету. Эти частицы межпланетной пыли родом с комет и астероидов представляют собой крохотные осколки размерами от нескольких десятых до нескольких сотых долей миллиметра, которые прошли сквозь атмосферу и достигли поверхности Земли.
Для сбора и анализа микрометеоритов было предпринято в общей сложности 6 экспедиций, возглавляемых Жаном Дюпра (Jean Duprat) из Национального центра научных исследований (фр. Centre National de la Recherche Scientifique, CNRS), Франция. Эти исследования были проведены на протяжении последних двух десятилетий в окрестностях франко-итальянской антарктической научной станции «Конкордия» (купол С). Купол С представляет собой идеальное место для сбора образцов микрометеоритов, поскольку характеризуется низкой скоростью накопления снега и почти полным отсутствием пыли земного происхождения.
В ходе этих экспедиций было собрано достаточное количество внеземных частиц (размерами от 30 до 200 микрометров), чтобы измерить их ежегодный поток, который соответствует массе, накапливаемой на поверхности Земли на площади в один квадратный метр.
Если применить полученные командой результаты ко всей планете, то общий годовой поток микрометеоритов составляет 5200 тонн. Микрометеориты являются главным источником внеземной материи на поверхности Земли, намного обгоняя по скорости накопления более крупные космические объекты, такие как обычные метеориты, для которых годовой поток не превышает 10 тонн.
Сравнение потока микрометеоритов с теоретическими прогнозами подтверждает, что источниками большинства микрометеоритов, достигающих Земли, являются кометы (80 процентов), а остальная пыль является продуктом фрагментации астероидов, добавили авторы.
Исследование опубликовано в журнале Earth and Planetary Science Letters; главный автор Дж. Рохас (J. Rojas).
https://www.astronews.ru/cgi-bin/mng.cg … 0409061133
Астрономы отыскали два новых кандидата в двойные квазары*
H. Hwang, N. Zakamska, Y. Shen / NASA, ESA
Астрономы при помощи наземных и космических телескопов обнаружили два кандидата в двойные квазары, которые существовали во времена, когда возраст Вселенной составлял три миллиарда лет. Расстояние между сверхмассивными черными дырами в одном из кандидатов оценивается в 11,4 тысячи световых лет. Статья опубликована в журнале Nature.
Считается, что в ранней Вселенной события слияния галактик происходили достаточно часто, что приводило к образованию двойных систем из центральных сверхмассивных черных дыр, которые в итоге сливались в одну черную дыру. Поиск таких систем, где расстояние между черными дырами составляет несколько килопарсек, при значениях красного смещения z>2 важен для разрешения загадки механизмов образования и быстрого роста сверхмассивных черных дыр в ранней Вселенной, в настоящее время не существует ни одной подтвержденной двойной системы при z>2, где расстояние между черными дырами было бы меньше 10 килопарсек (около 33 тысяч световых лет).
Группа астрономов во главе с Юэ Шенем ( Yue Shen) из Иллинойсского университета сообщила об открытии двух двойных квазаров J0749+2255 и J0841+4825 при z> 2, которое было сделано при анализе данных наблюдений за 15 интересными кандидатами при помощи космических телескопов Gaia и «Хаббл», а также обзора неба SDSS и других наземных телескопов. Сами квазары представляют собой ядра двух активных галактик, в которых находятся сверхмассивные черные дыры, поглощающие вещество.
Значение красного смещения для J0749+2255 составило 2,17, а для J0841+4825 — 2,95, что означает, что квазары существовали, когда возраст Вселенной составлял около 3 миллиардов лет. В случае J0841+4825 астрономам удалось оценить расстояние между квазарами, которое составило 11,4 тысячи световых лет. Ученые отмечают, что существует вероятность того, что мы наблюдаем два изображения одного и того же квазара, созданные гравитационной линзой, находящейся между нами и квазаром, однако она достаточно мала — около пяти процентов. Существует также вероятность того, что это физическая пара квазаров, образованная не в результате слияния двух галактик.
Полученные результаты позволили дать оценку распространенности подобных систем при z>2: около десяти процентов наблюдаемых оптических квазаров могут содержать двойные системы сверхмассивных черных дыр, разделенных расстоянием в несколько килопарсек. Ожидается, что окончательно подтвердить открытия позволят будущие наблюдения космического телескопа «Джеймс Уэбб».
Ранее мы рассказывали о том, как ученые открыли самый далекий радиогромкий квазар, аномально массивную черную дыру в ранней Вселенной и паутину из шести галактик вокруг квазара.
Александр Войтюк
https://nplus1.ru/news/2021/04/08/double-quasar
Ускоренное расширение Вселенной объяснили самовзаимодействием темной материи
Космологическое ускорение частицы расширяющейся Вселенной (в относительных единицах) в зависимости от масштабного фактора в симуляциях со взаимным отталкиванием частиц темной материи (цветные точки) и в теоретической модели с космологической постоянной (сплошная линия).
Loeve K., Nielsen K. S. & Hansen S. H. / The Astrophysical Journal, 2021
Физики с помощью симуляций протестировали альтернативную модель ускоренного расширения Вселенной — отказались от космологической постоянной и постулировали существование сил отталкивания между частицами темной материи, которые действуют на масштабах порядка мегапарсеков и по величине пропорциональны квадрату дисперсии скоростей. Оказалось, что такой подход позволяет воспроизвести поведение Вселенной в общепринятой модели с космологической постоянной. Статья опубликована в The Astrophysical Journal.
Современные астрофизические наблюдения показывают, что Вселенная расширяется ускоренно — то есть удаленные галактики со временем разлетаются все быстрее. Этот факт требует физической интерпретации, ведь гравитация — взаимодействие, которое считается доминирующим на крупных масштабах, — лишь притягивает объекты друг к другу. В стандартной космологической модели ускоренное расширение описывают при помощи космологической постоянной — величины, которая описывает плотность энергии чистого вакуума (темной энергии) в уравнениях Общей теории относительности и обеспечивает отталкивание между далекими объектами.
Такой подход удобен, поскольку позволяет объяснять наблюдения, постулируя в модели всего один числовой параметр, однако у него есть и существенные недостатки. Так, космологическую постоянную приходится подбирать на основе самих же наблюдений и не удается вычислить независимо — например, в рамках квантовых представлений энергия вакуума оказывается на множество порядков выше, или вообще не может быть предсказана.
Это мотивирует ученых придумывать альтернативные модели, которые объясняли бы ускоренное расширение Вселенной, но не привлекали для этого космологической постоянной. Некоторые физики предлагают модифицировать теорию гравитации, другие — предположить, что расширение Вселенной неоднородно, а мы просто оказались в области, которая расширяется быстрее среднего, третьи — отказаться от ускоренного расширения как такового и искать ошибку в измерениях, которые о нем свидетельствуют. Тем не менее модель с космологической постоянной пока остается предпочтительной.
Физики из Института Нильса Бора под руководством Стина Хансена (Steen Hansen) предложили и проанализировали еще одно объяснение ускоренному расширению Вселенной. Авторы предположили, что темная материя, помимо гравитационного притяжения друг к другу и обычным частицам, испытывает еще и силу самоотталкивания, которая проявляется на межгалактических масштабах (порядка мегапарсеков).
Эту силу исследователи положили пропорциональной квадрату дисперсии скоростей частиц в галактиках (что делает ее в некотором смысле похожей на магнитную силу Лоренца между движущимися заряженными частицами) и обратно пропорциональной квадрату расстояния между разлетающимися галактиками (подобно гравитационной или кулоновской силе). Остальные параметры (кроме космологической постоянной, принятой равной нулю) физики позаимствовали из общепринятой модели.
Затем авторы проводили компьютерные симуляции эволюции распределения темной матери в области размером в 96 мегапарсеков, заполненной 2,1×106 частицами массами в 1,6×109 солнечных, между красными смещениями в z=20 и z=0,6 (в стандартной космологии последнее отвечает масштабу, на котором происходит переход от гравитационного замедления к космологическому ускорению). При этом числовой коэффициент, характеризующий величину отталкивания между частицами, исследователи подбирали так, чтобы результаты симуляции наилучшим образом описывались теорией с участием космологической постоянной.
Оказалось, что с помощью альтернативной модели можно воспроизводить прогнозы, которые дает стандартная космология — а значит, вероятно, и объяснять данные наблюдений. При этом, однако, не удается заменить пропорциональность силы квадрату дисперсии скоростей на линейный или кубический закон — оба случая дают существенное расхождение с общепринятой теорией.
Согласованность альтернативных космологических моделей со стандартной: если отталкивание пропорционально первой или третьей степени дисперсии скоростей, наблюдаются существенные расхождения.
Loeve K., Nielsen K. S. & Hansen S. H. / The Astrophysical Journal, 2021
Отмечается, что для серьезного сравнения альтернативной теории со стандартной нужно не просто «подгонять» параметры новой модели под старую, а, наоборот, искать и проверять различия в их прогнозах — на текущий момент, по словам авторов, данные крупномасштабных наблюдений практически не отдают предпочтения ни одной из них, и требуются более детальные исследования.
Кроме того, постулирование самоотталкивания темной материи может стать проблемой на меньших масштабах — например, в галактиках или галактических кластерах: если отталкивание будет сильнее гравитационного притяжения, то альтернативная модель не сможет описать существование таких структур.
За последнее время мы рассказывали и о других альтернативных космологических моделях. Так, в 2018 году британский физик предложил заменить темную материю и темную энергию отрицательной массой, а в 2019 ученые установили, что хамелеонная гравитация наравне с ОТО описывает формирование галактик.
Николай Мартыненко
https://nplus1.ru/news/2021/04/08/no-co … l-constant
Мессье 106
Авторы и права: НАСА, Архив космического телескопа им.Хаббла, Национальная обсерватория Китт-Пик;
Авторские права на данные от любителей астрономии и их обработку: Роберт Гендлер
Перевод: Д.Ю.Цветков
Пояснение: Недалеко от Большой Медведицы в окружении звезд созвездия Гончих Псов находится это небесное сокровище – туманность, открытая в 1781 году французским астрономом Пьером Мешеном, который известен как один из создателей метрической системы мер. Позднее туманность была добавлена в каталог его друга и коллеги Шарля Мессье под номером 106. Современные глубокие телескопические наблюдения показали, что этот объект представляет собой островную вселенную – спиральную галактику диаметром в 30 тысяч световых лет, находящуюся на расстоянии в 21 миллион световых лет, далеко за звездами Млечного Пути. На эффектном портрете галактики, смонтированном из изображений, полученных любительскими и профессиональными телескопами, хорошо видны молодые голубые звездные скопления и красноватые области звездообразования, очерчивающие спиральные рукава галактики, и яркое ядро в центре. На снимке также запечатлены замечательные красноватые струи светящегося водорода. Внизу справа видна маленькая галактика-спутник – NGC 4248, а по всему полю зрения разбросаны более далекие галактики. M106, известная также как NGC 4258 – одна из самых близких к нам активных сейфертовских галактик, свечение которых можно наблюдать во всех спектральных диапазонах от радиоизлучения до рентгеновских лучей. Считается, что мощное излучение активных галактик объясняется падением вещества на массивную центральную черную дыру.
http://www.astronet.ru/db/msg/1733646
Когда погаснет Солнце: эра тьмы
Светило, которому обязаны своим существованием и наша планета, и ее биосфера, и человеческая цивилизация, с точки зрения астрономов вполне банально.
Алексей Левин
Согласно общепринятым оценкам, Солнце возникло 4,59 млрд лет назад: разумеется, наше дневное светило родилось не на пустом месте. Его матерью было исполинское газопылевое облако, состоящее в основном из молекулярного водорода, которое под действием собственного тяготения медленно сжималось и деформировалось, пока не превратилось в плоский диск. Не исключено, что имел место и отец в лице космического события, которое увеличило гравитационную нестабильность облака и подхлестнуло его коллапс (таковым могла оказаться встреча с массивной звездой или же взрыв сверхновой). В центре диска возникла сфера из светящейся плазмы с температурой поверхности в несколько тысяч градусов, переводившая в тепло часть своей гравитационной энергии.
Новорожденное светило продолжало сжиматься, все больше разогревая свои недра. Через несколько миллионов лет их температура достигла 10 млн градусов Цельсия, и там начались самоподдерживающиеся реакции термоядерного синтеза. Юная протозвезда превратилась в нормальную звезду главной последовательности. Вещество ближней и дальней периферии диска сгустилось в холодные тела — планеты и планетоиды.
Услышать Солнце
В настоящее время исследователи Солнца располагают чрезвычайно мощной техникой изучения конвективной зоны – гелиосейсмологией. "Это метод исследования Солнца с помощью анализа его осцилляций, вертикальных колебаний солнечной поверхности, типичные периоды которых составляют несколько минут, – поясняет старший научный сотрудник Стэнфордского университета Александр Косовичев. – Они были открыты еще в начале 1960-х годов. В частности, в этой области много сделали сотрудники Крымской астрофизической обсерватории во главе с академиком Северным. Осцилляции возбуждаются турбулентной конвекцией в приповерхностных слоях Солнца. В ходе этих процессов рождаются звуковые волны, которые распространяются внутри Солнца. Определяя характеристики этих волн, мы получаем информацию, которая позволяет сделать выводы о внутреннем строении Солнца и механизмах генерации магнитных полей. Гелиосейсмология уже позволила определить глубину конвективной зоны, выяснить характер вращения солнечных слоев, уточнить наши представления о возникновении солнечных пятен, которые фактически представляют собой сгустки магнитного поля. Теперь мы знаем, что солнечное динамо очень отличается от планетарного, поскольку работает в сильно турбулентной среде. Оно генерирует как глобальное дипольное поле, так и множество локальных полей".
Вот кое-какие паспортные данные Солнца. Возраст — 4,59 млрд лет; масса — 1,989х1030 кг; средний радиус — 696 000 км; средняя плотность — 1,409 г/см^3 (плотность земной материи в четыре раза выше); эффективная температура поверхности (вычисленная в предположении, что Солнце излучает как абсолютно черное тело) — 5503˚С (в пересчете на абсолютную температуру — 5778 кельвинов); суммарная мощность излучения — 3,83х1023 кВт.
Солнечная гранулляция
Поверхность Солнца (фотосфера) даже в спокойном состоянии при наблюдении в телескоп (естественно, защищенный специальным фильтром) выглядит как набор зерен или пчелиные соты. Такая структура называется солнечной грануляцией. Она образуется благодаря конвекции, то есть тепловой циркуляции потоков газа – горячий газ "всплывает", а холодный – опускается вниз на границах гранул, которые видны как темные области. Типичный размер гранул – порядка 1000 км. На рисунке – инвертированное компьютерное изображение, рассчитанное с помощью эффекта Доплера – движение газовых потоков от наблюдателя изображено светлыми тонами, к наблюдателю - темными. Слева – составная картинка (сверху и против часовой стрелки): внутренняя структура Солнца с ядром и конвективной зоной; фотосфера с темным пятном; хромосфера; солнечная вспышка; вверху справа – протуберанец.
Поскольку Солнце вращается вокруг собственной оси не как единое целое, строго определенных суток оно не имеет. Поверхность его экваториальной зоны делает полный оборот за 27 земных суток, а приполярных зон — за 35 суток. Осевое вращение солнечных внутренностей еще сложнее и во всех деталях пока неизвестно.
В химическом составе солнечного вещества, естественно, доминируют водород (примерно 72% массы) и гелий (26%). Чуть меньше процента составляет кислород, 0,4% — углерод, около 0,1% — неон. Если выразить эти соотношения в количестве атомов, то получается, что на миллион атомов водорода приходится 98 000 атомов гелия, 850 атомов кислорода, 360 — углерода, 120 — неона, 110 — азота и по 40 атомов железа и кремния.
Солнечная механика
Слоистую структуру Солнца нередко сравнивают с луковицей. Эта аналогия не слишком удачна, поскольку сами слои пронизаны мощными вертикальными потоками вещества и энергии. Но в первом приближении она приемлема. Солнце светит за счет термоядерной энергии, которая генерируется в его ядре. Температура там достигает 15 млн градусов Цельсия, плотность — 160 г/см^3, давление — 3,4х1011 атм. В этих адских условиях осуществляется несколько цепочек термоядерных реакций, составляющих протон-протонный цикл (p-p-цикл). Этим именем он обязан начальной реакции, где два протона, столкнувшись, порождают ядро дейтерия, позитрон и электронное нейтрино.
В ходе этих превращений (а их довольно много) сгорает водород и рождаются различные изотопы таких элементов Периодической системы, как гелий, бериллий, литий и бор. Три последних элемента вступают в ядерные реакции либо распадаются, а гелий остается — вернее, остается его основной изотоп гелий-4. В результате оказывается, что четыре протона дают начало одному ядру гелия, двум позитронам и двум нейтрино. Позитроны немедленно аннигилируют с электронами, а нейтрино покидают Солнце, практически не реагируя с его веществом. Каждая реакция p-p-цикла высвобождает 26,73 мегаэлектронвольта в форме кинетической энергии рожденных частиц и гамма-излучения.
Если бы протосолнечное облако состояло исключительно из элементов, возникших в ходе Большого взрыва (водорода и гелия-4 с очень малой примесью дейтерия, гелия-3 и лития-7), то этими реакциями все бы и закончилось. Однако композиция протосолнечного вещества была намного богаче, неоспоримым доказательством чему служит хотя бы наличие железа в солнечной атмосфере. Этот элемент, как и его ближайшие соседи в менделеевской таблице, рождается только в недрах гораздо более массивных светил, где температуры достигают миллиардов градусов. Солнце к ним не относится. Если железо там все-таки имеется, то лишь потому, что первичное облако уже было загрязнено и этим металлом, и еще многими другими элементами. Все они образовались в ядерных топках гигантских звезд прежних поколений, взорвавшихся сверхновыми и разбросавших продукты своей творческой деятельности по всему космическому пространству.
Это обстоятельство не сильно меняет вышеприведенную схему внутрисолнечного термоядерного синтеза, но все-таки привносит в нее кое-какие поправки. Дело в том, что при 15 млн градусов водород может превратиться в гелий и в углеродно-азотно-кислородном цикле (CNO-цикл). В его начале протон сталкивается с ядром углерода-12 и порождает ядро азота-13 и квант гамма-излучения. Азот распадается на ядро углерода-13, позитрон и нейтрино. Ядро тяжелого углерода опять-таки сталкивается с протоном, из чего происходят азот-14 плюс гамма-квант. Азот заглатывает третий протон с выделением гамма-кванта и кислорода-15, который трансформируется в азот-15, позитрон и нейтрино. Ядро азота захватывает последний, четвертый протон и раскалывается на ядра углерода-12 и гелия-4. Суммарный баланс такой же, как и в первом цикле: четыре протона в начале, альфа-частица (она же ядро гелия-4), пара позитронов и пара нейтрино в конце. Плюс, естественно, такой же выход энергии, без малого 27 МэВ. Что до углерода-12, то он в этом цикле вообще не расходуется, исчезает в первой реакции и снова появляется в последней. Это не топливо, а катализатор.
Солнце вращается вокруг своей оси, однако не как единое целое. На рисунке – компьютерная модель, составленная на основе данных доплеровского измерения скорости вращения отдельных участков Солнца, собранных космической обсерваторией SOHO (Solar Heliospheric Observatory). Цвет обозначает скорость вращения (в порядке убывания: красный, желтый, зеленый, синий). Участки горячей плазмы, перемещающиеся с различными скоростями, образуют "ленты", на границах которых возникают возмущения локальных магнитных полей, в результате чего именно здесь чаще всего и возникают солнечные пятна.
Реакции CNO-цикла внутри Солнца идут довольно вяло и обеспечивают лишь полтора процента общего выхода энергии. Однако забывать их не стоит хотя бы потому, что иначе расчетная мощность потока солнечных нейтрино будет заниженной. Загадки нейтринного излучения Солнца очень интересны, но это вполне самостоятельная тема, которая не укладывается в рамки данной статьи.
Ядро совсем молодого Солнца на 72% состояло из водорода. Модельные расчеты показали, что сейчас на его долю приходится лишь 35% массы центральной зоны ядра и 65% — периферийной. Ничего не поделаешь, выгорает даже ядерное топливо. Впрочем, его хватит еще миллиардов на пять лет. Процессы в термоядерной топке Солнца иногда сравнивают со взрывом водородной бомбы, но сходство здесь весьма условно. Десятки килограммов начинки мощных ядерных бомб имеют мощность в мегатонны и десятки мегатонн тротилового эквивалента. А вот солнечное ядро при всей его гигантской массе вырабатывает всего около ста миллиардов мегатонн в секунду. Нетрудно сосчитать, что средняя мощность энерговыделения составляет шесть микроватт на килограмм — человеческое тело производит тепло в 200 000 раз активней. Солнечный термояд не «взрывается», а медленно-медленно «тлеет» — к великому нашему счастью.
Лучистый перенос
Внешняя граница ядра находится приблизительно в 150 000 км от центра Солнца (0,2 радиуса). В этой зоне температура снижается до 9 млн градусов. При последующем охлаждении реакции протон-протонного цикла прекращаются — у протонов недостает кинетической энергии для преодоления электростатического отталкивания и слияния в ядро дейтерия. Реакции CNO-цикла там тоже не идут, поскольку их температурный порог даже выше. Поэтому на границе ядра солнечный термояд сходит на нет.
Солнечные пятна
Трехмерная модель солнечного пятна, построенная на основе данных, полученных с помощью одного из инструментов (Michelson Doppler Imager) космической обсерватории SOHO (Solar and Heliospheric Observatory). Верхняя плоскость – это поверхность Солнца, нижняя плоскость проходит на глубине 22 тысячи километров. Вертикальная плоскость сечения продолжена до 24 тысяч километров. Цветами обозначены области с различной скоростью звука (по мере убывания – от красной к синей и черной). Сами пятна – это места выхода в солнечную атмосферу сильных магнитных полей. Они видны как участки с пониженной температурой на поверхности Солнца, обычно они окружены более горячими активными областями - факелами. Количество пятен на Солнце изменяется с периодом в 11 лет (чем их больше – тем больше активность Солнца).
Ядро окружено мощным сферическим слоем, который заканчивается на вертикальной отметке в 0,7 солнечного радиуса. Это лучистая зона (англ. radiative zone). Она заполнена водородно-гелиевой плазмой, плотность которой по мере движения от внутренней границы зоны к внешней сокращается в сотню раз, от 20 до 0,2 г/см^3. Хотя внешние плазменные слои холоднее внутренних, температурный градиент там не настолько велик, чтобы возникли вертикальные потоки вещества, уносящие тепло от нижних слоев к верхним (такой механизм теплопереноса называется конвекцией). В надъядерном слое никакой конвекции нет и быть не может. Выделяемая в ядре энергия проходит сквозь него в виде квантов электромагнитного излучения.
Как это происходит? Рожденные в центре ядра гамма-кванты рассеиваются в его веществе, постепенно теряя энергию. До границы ядра они добираются в виде мягкого рентгена (длина волны порядка одного нанометра и энергия 400−1300 эВ). Тамошняя плазма для них почти непрозрачна, фотоны могут преодолеть в ней расстояние всего лишь в доли сантиметра. При столкновении с ионами водорода и гелия кванты отдают им свою энергию, которая частично уходит на поддержание кинетической энергии частиц на прежнем уровне, а частично переизлучается в виде новых квантов большей длины. Так что фотоны постепенно диффундируют через плазму, погибая и рождаясь вновь. Блуждающие кванты легче уходят вверх (где вещество менее плотно), нежели вниз, и поэтому лучистая энергия перетекает из глубин зоны к ее внешней границе.
Поскольку в зоне лучистого переноса вещество неподвижно, она вращается вокруг солнечной оси как единое целое. Но лишь до поры до времени. Во время перемещения к поверхности Солнца фотоны проходят все более длинные дистанции между столкновениями с ионами. Это означает, что разница в кинетической энергии излучающих и поглощающих частиц все время возрастает, ведь солнечная материя на бóльших глубинах горячее, чем на меньших. В результате плазма дестабилизируется и в ней возникают условия для физического перемещения вещества. Зона лучистого переноса переходит в конвективную зону.
Солнечная корона
Фотография солнечной короны, сделанная во время полного солнечного затмения 26 февраля 1998 года. Корона – это внешняя часть солнечной атмосферы, состоящая из разреженного водорода, разогретого до температуры порядка миллиона градусов Цельсия. Цвета на снимке – синтетические, и обозначают уменьшающуюся яркость короны по мере удаления от Солнца (синее с розовым пятно в центре – это Луна).
Зона конвекции
Она начинается на глубине в 0,3 радиуса и простирается вплоть до поверхности Солнца (вернее, его атмосферы). Ее подошва нагрета до 2 млн градусов, в то время как температура внешней границы не достигает и 6000˚С. От лучевой зоны ее отделяет тонкий промежуточный слой — тахоклин. В нем происходят интереснейшие, но пока не слишком изученные вещи. Во всяком случае есть основания считать, что движущиеся в тахоклине потоки плазмы вносят основной вклад в формирование солнечного магнитного поля. Нетрудно вычислить, что зона конвекции занимает около двух третей объема Солнца. Однако масса ее очень невелика — всего два процента солнечной. Это и естественно, ведь солнечное вещество по мере удаления от центра неотвратимо разрежается. У нижней границы зоны плотность плазмы равна 0,2 плотности воды, а при выходе в атмосферу она уменьшается до 0,0001 плотности земного воздуха над уровнем моря.
Вещество в конвективной зоне перемещается весьма запутанным образом. От ее подошвы восходят мощные, но медленные потоки горячей плазмы (поперечником в сотню тысяч километров), скорость которых не превышает нескольких сантиметров в секунду. Навстречу им опускаются не столь могучие струи менее нагретой плазмы, скорость которых измеряется уже метрами в секунду. На глубине в несколько тысяч километров восходящая высокотемпературная плазма разделяется на гигантские ячейки. Наиболее крупные из них имеют линейные размеры порядка 30−35 тысяч километров — их называют супергранулами. Ближе к поверхности образуются мезогранулы с характерным размером в 5000 км, а еще ближе — в 3−4 раза меньшие гранулы. Супергранулы живут около суток, гранулы — обычно не более четверти часа. Когда эти продукты коллективного движения плазмы добираются до солнечной поверхности, их легко увидеть в телескоп со специальным фильтром.
Атмосфера
Она устроена довольно сложно. Весь солнечный свет уходит в космос с ее нижнего уровня, который называют фотосферой. Основным источником света служит нижний слой фотосферы толщиной в 150 км. Толщина всей фотосферы составляет около 500 км. Вдоль этой вертикали температура плазмы снижается от 6400 до 4400 К.
В фотосфере постоянно возникают области пониженной (до 3700 К) температуры, которые светятся слабее и обнаруживаются в виде темных пятен. Количество солнечных пятен изменяется с периодом в 11 лет, но они никогда не покрывают больше 0,5% площади солнечного диска.
Над фотосферой расположен хромосферный слой, а еще выше — солнечная корона. О существовании короны известно с незапамятных времен, поскольку она превосходно видна во время полных солнечных затмений. Хромосферу же открыли сравнительно недавно, лишь в середине XIX века. 18 июля 1851 года сотни астрономов, собравшихся в Скандинавии и окрестных странах, наблюдали, как Луна закрывает солнечный диск. За несколько секунд до появления короны и перед самым концом полной фазы затмения ученые заметили у края диска светящийся красный полумесяц. Во время затмения 1860 года удалось не только лучше рассмотреть такие вспышки, но и получить их спектрограммы. Спустя девять лет английский астроном Норман Локьер назвал эту зону хромосферой.
Плотность хромосферы крайне мала даже по сравнению с фотосферой, всего 10−100 млрд частиц на 1 см³. Зато нагрета она сильнее — до 20 000˚С. В хромосфере постоянно наблюдаются темные вытянутые структуры — хромосферные волокна (их разновидность — всем известные протуберанцы). Они представляют собой сгустки более плотной и холодной плазмы, поднятой из фотосферы петлями магнитного поля. Видны и участки повышенной яркости — флоккулы. И наконец, в хромосфере постоянно появляются и через несколько минут исчезают продолговатые плазменные структуры — спикулы. Это своего рода путепроводы, по которым материя перетекает из фотосферы в корону.
День грядущий
От процессов в солнечных недрах непосредственно зависит грядущая судьба нашего светила. По мере уменьшения запасов водорода ядро постепенно сжимается и разогревается, что увеличивает светимость Солнца. С момента превращения в звезду главной последовательности она уже выросла на 25-30% - и этот процесс будет продолжаться. Примерно через 5 млрд лет температура ядра достигнет сотни миллионов градусов, и тогда в его центре загорится гелий (с образованием углерода и кислорода). На периферии в это время будет дожигаться водород, причем зона его сгорания несколько сдвинется по направлению к поверхности. Солнце потеряет гидростатическую устойчивость, его внешние слои сильно раздуются, и оно превратится в исполинское, но не особенно яркое светило - красный гигант. Светимость этого исполина на два порядка превысит нынешнюю светимость Солнца, но его жизненный срок будет много короче. В центре его ядра быстро накопится большое количество углерода и кислорода, которые вспыхнуть уже не смогут - не хватит температуры. Внешний гелиевый слой будет продолжать гореть, постепенно расширяясь и в силу этого охлаждаясь. Скорость термоядерного сгорания гелия чрезвычайно быстро растет с повышением температуры и падает с ее снижением. Поэтому внутренности красного гиганта начнут сильно пульсировать, и в конце концов дело может дойти до того, что его атмосфера окажется выброшенной в окружающий космос со скоростью в десятки километров в секунду. Сначала разлетающаяся звездная оболочка под действием ионизирующего ультрафиолетового излучения нижележащих звездных слоев ярко засияет голубым и зеленым светом - на этой стадии она называется планетарной туманностью. Но уже через тысячи или, в максимуме, десятки тысяч лет туманность остынет, потемнеет и рассеется в пространстве. Что касается ядра, то там превращение элементов прекратится вовсе, и оно будет светить лишь за счет накопленной тепловой энергии, все больше и больше остывая и угасая. Сжаться в нейтронную звезду или черную дыру оно не сможет, не хватит массы. Такие холодеющие остатки почивших в бозе звезд солнечного типа называют белыми карликами.
Корона — самая горячая часть атмосферы, ее температура достигает нескольких миллионов градусов. Этот нагрев можно объяснить с помощью нескольких моделей, базирующихся на принципах магнитной гидродинамики. К сожалению, все эти процессы очень сложны и изучены весьма слабо. Корона также насыщена разнообразными структурами — дырами, петлями, стримерами.
Солнечные проблемы
Несмотря на то что Солнце — это самый крупный и самый заметный объект земного неба, нерешенных проблем в физике нашего светила хватает. «Мы знаем, что магнетизм Солнца чрезвычайно сильно влияет на динамику его атмосферы — к примеру, порождает солнечные пятна. Но как он возникает и как распространяется в плазме, еще не выяснено, — отвечает на вопрос "ПМ" директор американской Национальной солнечной обсерватории Стивен Кейл. — На второе место я бы поставил расшифровку механизма возникновения солнечных вспышек. Это кратковременные, но крайне мощные выбросы быстрых электронов и протонов, сочетающиеся с генерацией столь же мощных потоков электромагнитного излучения самых разных длин волн. О вспышках собрана обширная информация, однако разумных моделей их возникновения пока нет. Наконец, надо бы понять, какими способами фотосфера подпитывает энергией корону и разогревает ее до температур, которые на три порядка превышают ее собственную температуру. А для этого, прежде всего, необходимо как следует определить параметры магнитных полей внутри короны, поскольку эти величины известны далеко не в полной мере».
https://www.popmech.ru/science/7853-put … -my-obyaz/
Кратер астероида на Земле дает подсказки о марсианских кратерах
Исследовательская группа под руководством Геттингенского университета обнаружила проседание дна кратера от чашеобразного слоя вулканического пепла, - пишет eurekalert.org со ссылкой на Journal of Geophysical Research Planets.
Nördlinger Ries возрастом почти 15 миллионов лет - это кратер, образовавшийся от столкновения с астероидом, заполненный озерными отложениями. Его структура сравнима с кратерами, которые сейчас исследуются на Марсе. Помимо различных других отложений на краю впадины, заполнение кратера в основном образовано слоистыми глинистыми отложениями. Неожиданно группа исследователей во главе с Геттингенским университетом обнаружила слой вулканического пепла в кратере астероида. Кроме того, команда смогла показать, что земля под кратером в долгосрочной перспективе опускается, что дает важную информацию для исследования кратеров на Марсе, таких как древние озера Гейла и Езеро, которые в настоящее время исследуются марсоходы НАСА Curiosity и Perseverance Rovers.
До сих пор предполагалось, что эти озерные отложения располагались на устойчивом дне кратера. То же самое можно сказать и о кратерных отложениях на Марсе, хотя некоторые из них имеют значительно наклонные толщи отложений. Слои этих кратерных отложений выглядят на поверхности в виде кольцевидных структур. Однако точное понимание основных условий и временных взаимосвязей отложений важно для реконструкции химического развития кратерного озера и обитаемости возможных форм жизни, которые могли развиваться там в прошлом.
Впервые исследователи смогли обнаружить слой вулканического пепла в озерных отложениях кратера толщиной 330 метров, заполняющего реку Рисс. «Это удивительно, поскольку вулканические породы здесь не ожидались, поскольку круглый бассейн был идентифицирован как кратер астероида, - говорит первый автор, профессор Гернот Арп из Центра наук о Земле Геттингенского университета. - Пепел был принесен из вулкана на 760 километров дальше на восток в Венгрии. Возраст пепла можно датировать 14,2 миллиона лет назад», - добавляет его коллега и соавтор Иштван Дункл.
Зола, которая за это время превратилась в богатые азотом силикатные минералы, демонстрирует удивительно прочную чашевидную геометрию: на краю бассейна зола находится на текущей поверхности земли, а в центре бассейна - на поверхности на глубине около 220 метров. Последующая систематическая оценка бурения и геологического картирования теперь также выявила расположение концентрических колец - «пластов обнажения» - для заполнения кратера Рисс, с самыми старыми отложениями на краю и самыми последними в центре.
Расчеты показывают, что такую геометрию напластования нельзя объяснить только тем, что подстилающие озерные отложения оседают. Фактически, необходимо было учитывать дополнительное проседание примерно на 135 метров. Это можно объяснить только явлениями проседания коренной породы кратера, которая имеет трещины на несколько километров глубиной. Хотя необходимы дальнейшие исследования для объяснения точных механизмов этого проседания дна кратера, простой модельный расчет уже может показать, что проседание такой величины в основном возможно из-за явления оседания трещиноватых подземных пород. Это означает, что наклонные пласты в заполнении кратеров на Марсе теперь могут быть лучше объяснены, по крайней мере, для кратеров, которые показывают тесную своевременную связь образования кратеров, затопления водой и отложений.
[Фото: eurekalert.org]
Источник: wwweurekalert.org
https://scientificrussia.ru/news/krater … h-kraterah
Экстремальные пульсары могут испускать намного больше излучения, чем предполагалось
Согласно новому обзору пульсара в Крабовидной туманности на расстоянии около 6500 световых лет, события, известные как «гигантские радиоимпульсы», сопровождается увеличением рентгеновского излучения.
Это означает, что пульсары намного более энергичны, чем предполагалось; это также имеет значение для понимания загадочных быстрых радиовсплесков (FRB), которые вспыхивают за миллионы световых лет в межгалактическом пространстве.
Радиопульсары — странные звездные объекты. Это тип компактного объекта, известного как нейтронная звезда — плотное коллапсировавшее ядро массивной звезды, которая превратилась в сверхновую.
Многие нейтронные звезды ничем не примечательны, но пульсары… ну, они пульсируют. Они быстро вращаются, испуская струи радиоизлучения со своих полюсов; звезды пульсируют, как стремительный космический маяк, в масштабе времени всего в миллисекунды.
Не все пульсары ведут себя одинаково. Некоторые из них испускают гигантские радиоимпульсы — чрезвычайно короткие, миллисекундные импульсы радиоизлучения, которые намного сильнее обычных излучений мертвой звезды.
Пульсар в центре живописной Крабовидной туманности — это звезда, которая стала сверхновой чуть менее 1000 лет назад. Это один из самых молодых известных нам пульсаров с периодом вращения 30 раз в секунду.
Он также мощный гигантский генератор импульсов и единственный известный нам объект, где эти гигантские импульсы сопровождаются увеличением излучения за пределами радиоволн.
Поэтому международная группа астрономов во главе с Теруаки Эното из кластера новаторских исследований RIKEN в Японии отправилась на поиски волн других длин. Со всего мира они координировали одновременные наблюдения пульсара с помощью радио- и рентгеновских телескопов, чтобы увидеть, смогут ли они обнаружить увеличение рентгеновского излучения в радиоимпульсах.
Спустя три года ученые обнаружили сигнал, достаточно сильный и ясный, чтобы подтвердить, что пульсар в Крабовидной туманности действительно испускал около 4 процентов дополнительного рентгеновского излучения своими гигантскими радиоимпульсами, что позволяет предположить, что астрономы сильно недооценили силу этого явления.
То, что наблюдала команда, согласуется с магнитным пересоединением — высвобождением энергии, которое возникает, когда силовые линии магнитного поля вокруг звезды ломаются и повторно соединяются. Это то, что происходит на Солнце постоянно; результат — солнечная вспышка.
Гигантские радиоимпульсы также были предложены в качестве низкоэнергетической версии загадочных радиосигналов из других галактик, известных как быстрые радиовсплески. Подобно гигантским радиоимпульсам, быстрые радиовсплески (в основном) случайны и длятся всего миллисекунды — но они исходят гораздо дальше и намного мощнее.
Исследование команды опубликовано в журнале Science.
Источники: Фото: (NASA/ESA; J. Hester/ASU and M. Weisskopf/NASA/MSFC)
https://rwspace.ru/news/ekstremalnye-pu … galos.html
Земля почти лишилась кислорода 2,3 миллиарда лет назад
Согласно новому исследованию, переход Земли к постоянной насыщенной кислородом атмосферой был остановленным процессом, который занял на 100 миллионов лет больше, чем считалось ранее.
Когда Земля сформировалась 4,5 миллиарда лет назад, в атмосфере почти не было кислорода. Но 2,43 миллиарда лет назад кое-что произошло: уровень кислорода начал расти, а затем падать, что сопровождалось масштабными изменениями климата, включая несколько оледенений.
Новое исследование, опубликованное в журнале Nature 29 марта, продлевает Великое событие окисления, на 100 миллионов лет. Оно также может подтвердить связь между оксигенацией и резкими колебаниями климата.
«Мы только сейчас начинаем понимать сложность этого события», — сказал соавтор исследования Андрей Беккер, геолог из Калифорнийского университета в Риверсайде.
Возникновение кислорода.
Кислород, возникший во время Великого события окисления, был произведен морскими цианобактериями, типом бактерий, которые производят энергию посредством фотосинтеза. Основным побочным продуктом фотосинтеза является кислород, и ранние цианобактерии в конечном итоге произвели достаточно кислорода, чтобы навсегда изменить облик планеты.
Подпись этого изменения видна в морских осадочных породах. В бескислородной атмосфере эти породы содержат определенные виды изотопов серы. (Изотопы — это элементы с различным числом нейтронов в ядрах.) Когда возникают кислородные пики, изотопы серы исчезают, потому что химические реакции, которые их создают, не происходят в присутствии кислорода.
Ученые обнаружили, что после третьего оледенения атмосфера сначала была бескислородной, затем уровень кислорода поднимался и снова падал. Уровень кислорода снова поднялся 2,32 миллиарда лет назад — точка, в которой ученые ранее считали, что повышение было постоянным. Но в более молодых породах Беккер и его коллеги снова обнаружили падение уровня кислорода. Это падение совпало с окончательным оледенением, которое ранее не было связано с атмосферными изменениями.
«Атмосферный кислород в то время был очень нестабильным, поднимался до относительно высоких уровней и упал до очень низких уровней», — сказал Беккер.
Цианобактерии против вулканов.
Исследователи все еще выясняют, что вызвало все эти колебания, но у них есть некоторые идеи. Одним из ключевых факторов является метан, парниковый газ, который более эффективно удерживает тепло, чем углекислый газ.
Сегодня метан играет небольшую роль в глобальном потеплении по сравнению с углекислым газом, потому что метан вступает в реакцию с кислородом и исчезает из атмосферы в течение примерно десяти лет, тогда как углекислый газ остается в течение сотен лет. Но когда в атмосфере почти не было кислорода, метан существовал намного дольше и выступал в качестве более важного парникового газа.
Таким образом, последовательность оксигенации и изменения климата, возможно, выглядела примерно так: цианобактерии начали вырабатывать кислород, который реагировал с метаном в атмосфере в то время, оставляя после себя только углекислый газ.
Этого углекислого газа было недостаточно, чтобы компенсировать согревающий эффект потерянного метана, поэтому планета начала охлаждаться. Ледники расширились, и поверхность планеты стала ледяной и холодной.
Однако спасением планеты от постоянного замораживания стали подледниковые вулканы. Вулканическая активность в конечном итоге повысила уровень углекислого газа до уровня, достаточного для того, чтобы снова нагреть планету. И хотя производство кислорода в покрытых льдом океанах замедлилось из-за того, что цианобактерии получали меньше солнечного света, метан из вулканов и микроорганизмов снова начал накапливаться в атмосфере, еще больше нагревая землю.
Источники: Фото: (Jim Sugar/Getty Images)
https://rwspace.ru/news/zemlya-pochti-l … nazad.html
Ровер «Curiosity» раскрыл интригующие подробности климата древнего Марса
Оказалось, что Красная планета не сразу превратилась в безжизненную пустыню. Ее поверхность несколько раз пересыхала, но затем вода возвращалась снова.
В то время как марсоход «Perseverance» с дроном «Ingenuity» только готовятся к старту своих миссий на Красной планете, их предшественник «Curiosity» продолжает исследовать основание горы Шарп высотой несколько километров в центре кратера Гейла.
«Используя данные инструмента ChemCam, мы проанализировали крутой рельеф горы Шарп и выяснили, что климат в этом регионе сменялся засушливыми и влажными периодами, прежде чем поверхность Марса полностью лишилась воды около 3 миллиардов лет назад», – рассказывает Уильям Рапен из Университета Тулузы (Франция), ведущий автор исследования, представленного в журнале Geology.
Художественное изображение Марса 4 миллиарда лет назад. Credit: ESO
Орбитальные космические аппараты, изучающие Марс, уже неоднократно предоставляли информацию о минеральном составе склонов горы Шарп, однако только сейчас подробные наблюдения осадочных слоев с поверхности планеты позволили раскрыть условия, в которых они образовались.
«При продвижении вверх по наблюдаемым склонам, высотой несколько сотен метров, типы слоев радикально меняются. Протяженные толстые косослоистые структуры, которые лежат над отложенными озерами глинами, сформировавшими подножие горы Шарп, являются признаком миграции созданных ветром дюн во время длительного засушливого периода. Над ними видны чередующиеся тонкие хрупкие и устойчивые слои, характерные для речных пойменных отложений и говорящие о временном возвращении влажного периода», – отмечают авторы исследования.
Вид на холмы на склонах горы Шарп с различными типами слоев, указывающими на чередование периодов сухого и влажного климата. Credit: NASA/JPL-Caltech/MSSS
Таким образом, климат Марса, вероятно, претерпел несколько крупномасштабных колебаний между засушливыми условиями и средой с реками и озерами, пока на нем окончательно не установился наблюдаемая сегодня безжизненная пустыня.
В рамках расширенной миссии марсоход «Curiosity» планирует взобраться на подножие горы Шарп и пробурить различные пласты. Это позволит проверить предположение планетологов и, возможно, более подробно охарактеризовать эволюцию древнего марсианского климата, раскрыв причины его колебаний.
https://in-space.ru/rover-curiosity-ras … ego-marsa/
11 апреля с Землей сблизится 30-метровый астероид
Астероид 2021 GT3, относящийся к группе Аполлона, открыт 6 апреля 2021 года.
Согласно данным Центра по изучению космических объектов в ближнем космосе NASA, 11 апреля 2021 года вблизи нашей планеты со скоростью 24 километра в секунду промчится астероид 2021 GT3, размер которого может достигать 33 метров.
В момент максимального сближения, которое состоится в 0:33 по московскому времени, расстояние от Земли до 2021 GT3 составит примерно 256 тысяч километров, что меньше среднего расстояния до Луны (384 тысячи километров).
Орбита Земли обозначена синим, астероида 2021 GT3 белым, пунктиром – орбиты Меркурия, Венеры и Марса. Credit: Ин-Спейс
Астероид 2021 GT3, обнаруженный 6 апреля 2021 года, относится к группе Аполлона. Один оборот вокруг Солнца он совершает за 650 земных дней или 1,78 земных года, максимально удаляясь от него на 378 миллионов километров и приближаясь на 61 миллион километров.
На данный момент астрономам не удалось точно определить размер объекта, однако исходя из расчетов он составляет от 15 до 33 метров. Стоит отметить, что, согласно высокоточным орбитальным вычислениям, выполняемым в Лаборатории реактивного движения NASA, угрозы столкновения астероида 2021 GT3 с Землей нет.
https://in-space.ru/11-aprelya-s-zemlej … -asteroid/